Stereochemically Controlled Synthesis of Unsaturated Acids by the Coupled Baeyer-Villiger and Horner-Wittig Reactions: Synthesis of (Z)-Oct-6-enoic Acid

Daniel Levin and Stuart Warren*
University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, UK

The lithium derivative of $\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{Et}$ reacts with cyclohexene oxide to give largely one diastereoisomer of an alcohol. Oxidation to a ketone and then to a lactone followed by hydrolysis gives a Horner-Wittig intermediate and hence pure (Z)-oct-6-enoic acid. Complementary methods give (E)-oct-6-enoic acid.

We have reported ${ }^{1}$ a Horner-Wittig route to unsaturated acids via separable crystalline lactones such as 4 which, though formed with only weak threo-selectivity by the reduction of the corresponding keto acid, give pure E - or Z-acids, e.g. 5, stereospecifically on completion of the Horner-Wittig reaction. We now report ${ }^{2}$ an alternative approach (Scheme 1) which allows a higher material conversion into the erythro-lactone 4.

1

erythro-3
$\mid \mathrm{CF}_{3} \mathrm{CO}_{3} \mathrm{H}$

erythro-4

Z-5

2

threo-3

E-5

Scheme 1
The lithium derivative of ethyldiphenylphosphine oxide added to cyclohexene oxide with high (ca.9:1) stereoselectivity to give the crystalline alcohols 1 and 2, separated by flash column chromatography. ${ }^{3}$ This selectivity concerns only the chiral centre bearing the $\mathrm{Ph}_{2} \mathrm{PO}$ group as the other two are specifically related by the anti attack on the epoxide. A possible explanation is that the favoured approach 6 has the large $\mathrm{Ph}_{2} \mathrm{PO}$ group away from the ring and the Me group in the less hindered of the two remaining positions. Attempts to vary the proportions of 1 and 2 (addition of TMEDA or $\mathrm{Cu}^{1} \mathrm{I}$) were not successful, but treating pure 1 with 2 equiv. of BuLi and quenching with water gave a $1.5: 1$ mixture of $\mathbf{1 : 2 .} \dagger$

7

The selectivity is not a consequence of a six-membered ring conformation since the lithium derivative of $\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{Et}$ added to cyclopentene oxide to give the adducts 7 and 8 with slightly greater stereoselectivity. Similar stereoselectivities were found when epoxides of acyclic alkenes were attacked by lithium derivatives of related phosphine oxides ${ }^{4}$ or by enolates of amides. ${ }^{5}$ The stereochemistry of 1 and 7 is the same and was determined by X-ray crystal structure analysis.

Oxidation and Epimerisation.-Of the various methods ${ }^{6}$ for oxidising $\mathrm{Ph}_{2} \mathrm{PO}$-containing alcohols to ketones, NaOCl in $\mathrm{HOAc}{ }^{7}$ gave the highest yields and the simplest work-up. The alcohols 1 and 2 were oxidised by this reagent to give erythro- 3 and threo- 3 respectively (Scheme 1) without epimerisation, providing the reaction was worked up immediately. Prolonged exposure to HOAc, slow crystallisation (EtOAc, HOAc, 1 week), or equilibration in acid ($\mathrm{TsOH}, \mathrm{AcOH}$) converted either ketone into a 10:1 (HPLC) mixture favouring threo- 3 from which pure threo- $\mathbf{3}$ could be isolated in 81% yield. Pure erythro$\mathbf{3}$ can be obtained, by isolation of pure 1 and oxidation without epimerisation, in 64% yield, and pure threo-3, by oxidation, epimerisation, and crystallisation of the mixture of 1 and 2 in 74% vield.

Baeyer-Villiger Reactions.--Pertrifluoroacetic acid ${ }^{8}$ gave an excellent yield of the lactone erythro- 4 from erythro- 3 with complete stereospecifity and high (ca. 25:1 by NMR) regioselectivity. The threo ketone 3 gave a cleanly stereospecific but less regioselective reaction, the ratio of threo- 4 to threo- 9 being $5: 3$, and we were unable to separate this mixture. We assume that the poorer regioselectivity in the threo-series is a stereo-

threo-9
electronic effect: a conformationally dependent bonding interaction between the C-P LUMO and the bond from C-6 to C-7 lowering the HOMO energy and hence the migrating ability of the latter. Effects of remote electronegative groups on BaeyerVilliger regioselectivity have been observed by others. ${ }^{9}$

The previous identification ${ }^{1}$ of erythro- and threo- 4 by coupling constants in their NMR spectra is now confirmed by correlation with the X-ray structure of 1 and the known stereospecificity of the Baeyer-Villiger reaction. ${ }^{10} \mathrm{We}$ have already described ${ }^{1}$ the hydrolysis of the lactones 4 and the elimination of $\mathrm{Ph}_{2} \mathrm{PO}_{2}{ }^{-}$from the resulting hydroxy acids. The present route provides a good yield of the acid $Z-5(91 \%$ from erythro-4) and could be used to prepare $E-5$ by hydrolysis of the mixture of threo 5 and 9 since only one of the resulting hydroxy acids can eliminate $\mathrm{Ph}_{2} \mathrm{PO}_{2}{ }^{-}$. However, our previous methods provide better routes to $E-5$. These simple examples show the complementary nature of our two routes to unsaturated acids.

Experimental

General procedures have been described before. ${ }^{11}$ BuLi refers to butyl-lithium and THF to dry tetrahydrofuran distilled from potassium.

2-(1-Diphenylphosphinoylethyl)cyclohexanol 1.-BuLi (1.55 mol dm ${ }^{-3}$ solution in hexane) was added dropwise to a stirred solution of ethyldiphenylphosphine oxide ($6 \mathrm{~g}, 26 \mathrm{mmol}$) in THF ($100 \mathrm{~cm}^{3}$) at $0{ }^{\circ} \mathrm{C}$ under nitrogen until the orange colour persisted. Further $\mathrm{BuLi}\left(1.55 \mathrm{~mol} \mathrm{dm}{ }^{-3}\right.$ solution; $16.8 \mathrm{~cm}^{3}, 26$ mmol) was added dropwise, the dark red solution was cooled to $-70^{\circ} \mathrm{C}$, and cyclohexene oxide $(2.85 \mathrm{~g}, 29 \mathrm{mmol})$ was added. The solution was allowed to warm to room temperature, and stirring was continued for 14 h . Saturated aqueous ammonium chloride ($80 \mathrm{~cm}^{3}$) was added, the bulk of the THF was removed by evaporation under reduced pressure, water $\left(80 \mathrm{~cm}^{3}\right)$ was added, and the mixture was extracted with EtOAc (4×50 cm^{3}). The combined organic extracts were washed with water ($30 \mathrm{~cm}^{3}$) and saturated brine ($20 \mathrm{~cm}^{3}$), dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure. HPLC analysis of the crude mixture indicated an $84: 16$ ratio of diastereoisomers. The minor diastereoisomer 2 was less soluble in EtOAc. Purification was achieved by flash column chromatography ${ }^{3}$ on Merck 9385 silica gel, eluting with EtOAc and then a mixture of EtOAc and methanol (95:5) once the first diastereoisomer had been eluted. This gave the [RS-($\left.\left.\mathrm{R}^{*}, \mathrm{R}^{*}, \mathrm{R}^{*}\right)\right]$-phosphine oxide $1(6.08 \mathrm{~g}, 71 \%)$ as plates, m.p. $162.5-164^{\circ} \mathrm{C}$ (Found: C , $73.1 ; \mathrm{H}, 7.6 ; \mathrm{P}, 9.3 . \mathrm{C}_{20} \mathrm{H}_{25} \mathrm{O}_{2} \mathrm{P}$ requires $\mathrm{C}, 73.1 ; \mathrm{H}, 7.65 ; \mathrm{P}$, 9.4%); $R_{\mathrm{f}}(\mathrm{EtOAc}) 0.38 ; v_{\max } / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right) 3300 \mathrm{br}(\mathrm{OH}), 1440$ $(\mathrm{PhP}), 1175(\mathrm{P}=\mathrm{O})$ and $1130(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 8.0-7.2(10 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{Ph}_{2} \mathrm{PO}\right), 5.6(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 3.6-3.2(1 \mathrm{H}, \mathrm{m}, H \mathrm{COH}), 2.3(1 \mathrm{H}$, quint, $J 8, \mathrm{PCH}), 2.2-1.8(1 \mathrm{H}, \mathrm{m}, \mathrm{PCHCHCO}), 1.9-0.8[8 \mathrm{H}, \mathrm{m}$, $\left.\left(\mathrm{CH}_{2}\right)_{4}\right]$ and $1.15\left(3 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{\mathrm{HH}} 17, \mathrm{PCHMe}\right) ; m / z 328\left(4 \%, \mathrm{M}^{+}\right)$, $230\left[8, \mathrm{Ph}_{2} \mathrm{P}(\mathrm{OH}) \mathrm{CHMe}^{+}\right]$and $202\left(100, \mathrm{Ph}_{2} \mathrm{POH}^{+}\right)$. The second product to be eluted was the [RS-($\left.\left.\mathrm{R}^{*}, \mathrm{~S}^{*}, \mathrm{~S}^{*}\right)\right]$-phosphine oxide $2\left(1.16 \mathrm{~g}, 14 \%\right.$), m.p. 203.5-204 ${ }^{\circ} \mathrm{C}$ (Found: C, 73.0; H, 7.4; $\mathrm{P}, 9.5 . \mathrm{C}_{20} \mathrm{H}_{25} \mathrm{O}_{2} \mathrm{P}$ requires $\mathrm{C}, 73.15 ; \mathrm{H}, 7.65 ; \mathrm{P}, 9.4 \%$); R_{f} (EtOAc) 0.28; $v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right) 3300 \mathrm{br}(\mathrm{OH}), 1440$ (PhP), $1170(\mathrm{P}=\mathrm{O})$ and $1120(\mathrm{CO}) ; \delta\left(\mathrm{CDCl}_{3}\right) 8.0-7.2(10 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{Ph}_{2} \mathrm{PO}\right), 3.6-3.2(1 \mathrm{H}, \mathrm{m}, H \mathrm{COH}), 3.1(1 \mathrm{H}$, quint, $J 8, \mathrm{PCH})$, $2.7(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 2.15-1.7\left[2 \mathrm{H}, \mathrm{m}, \mathrm{PCHHO}\right.$ and $\left.\mathrm{CH}\left(H^{*}\right) \mathrm{COH}\right]$, $2.8-1.3\left[3 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2}\right.$ and $\left.\mathrm{CH}(\mathrm{H}) \mathrm{COH}\right], 1.4-0.8[4 \mathrm{H}$, $\left.\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right) \mathrm{CH}_{2}\right]$ and $1.1\left(3 \mathrm{H}\right.$, dd, $J_{\mathrm{HH}} 7.5$ and $J_{\mathrm{PH}} 17$, PCHMe); m/z $328\left(3 \%, \mathbf{M}^{+}\right), 310\left(2, \mathbf{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right), 230$ [66, $\left.\mathrm{Ph}_{2} \mathrm{P}(\mathrm{OH}) \mathrm{CHMe}\right], 202\left(100, \mathrm{Ph}_{2} \mathrm{POH}^{+}\right)$and 201 (28, $\mathrm{Ph}_{2} \mathrm{PO}^{+}$).

2-(1-Diphenylphosphinoylethyl)cyclopentanol 7.-In the same way ethyldiphenylphosphine oxide ($4.6 \mathrm{~g}, 20 \mathrm{mmol}$), BuLi (155
mol dm^{-3} solution in hexane; $13 \mathrm{~cm}^{3}, 20 \mathrm{mmol}$), and cyclopentene oxide ($1.68 \mathrm{~g}, 20 \mathrm{mmol}$) gave [after 24 h at $50^{\circ} \mathrm{C}$, followed by extraction and purification by flash column chromatography ${ }^{3}$ on Merck 9385 silica gel (4.5 cm diam. $\times 15.2$ cm), eluting with EtOAc] the [RS- $\left.\left(\mathrm{R}^{*}, \mathrm{R}^{*}, \mathrm{R}^{*}\right)\right]$-phosphine oxide $7\left(4.44 \mathrm{~g}, 71 \%\right.$), m.p. $172.5-173^{\circ} \mathrm{C}$ (Found: C, 72.6; H, 7.55; P, 9.7, $\mathrm{M}^{+}, 314.1431 . \mathrm{C}_{19} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{P}$ requires $\mathrm{C}, 72.6 ; \mathrm{H}, 7.35 ; \mathrm{P}$, $9.85 \%, \mathrm{M}, 314.1435) ; R_{\mathrm{f}}(\mathrm{EtOAc}) 0.31 ; v_{\max } / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right)$ $3330 \mathrm{br}(\mathrm{OH}), 1440(\mathrm{PhP}), 1160(\mathrm{P}=\mathrm{O})$ and $1120(\mathrm{CO})$; $\delta\left(\mathrm{CDCl}_{3}\right) 8.1-7.3\left(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right), 5.1(1 \mathrm{H}$, br s, OH$)$, 4.25-3.9 (1 H, m, HCOH), $2.6(1 \mathrm{H}$, quint, $J 7.5, \mathrm{PCH}), 2.3-$ $1.3\left[7 \mathrm{H}, \mathrm{m}, \mathrm{OC}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}\right]$ and $1.1\left(3 \mathrm{H}, \mathrm{dd}, J_{\mathrm{HH}} 7.5\right.$ and J_{PH} 17, PCHMe); $m / z 314$ ($4 \%, \mathrm{M}^{+}$), 286 (4), 230 [7, $\mathrm{Ph}_{2} \mathrm{P}(\mathrm{OH})$ CHMe^{+}] and $202\left(100, \mathrm{Ph}_{2} \mathrm{POH}^{+}\right)$, and the [RS-(R*, $\left.\left.\mathrm{S}^{*}, \mathrm{~S}^{*}\right)\right]-$ phosphine oxide $8\left(0.5 \mathrm{~g}, 8 \%\right.$), m.p. $167-168^{\circ} \mathrm{C}$ (Found: C, 72.2; $\mathrm{H}, 7.65 ; \mathrm{P}, 9.8 . \mathrm{C}_{19} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{P}$ requires $\mathrm{C}, 72.6 ; \mathrm{H}, 7.35 ; \mathrm{P}, 9.85 \%$); $R_{\mathrm{f}}(\mathrm{EtOAc}) 0.23 ; v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right) 3300 \mathrm{br}(\mathrm{OH}), 1440(\mathrm{PhP})$, $1160(\mathrm{P}=\mathrm{O})$ and $1120(\mathrm{CO}) ; \delta\left(\mathrm{CDCl}_{3}\right) 8.1-7.3(10 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{Ph}_{2} \mathrm{PO}\right), 4.05(1 \mathrm{H}, \mathrm{q}, J 7, \mathrm{HOCH}), 2.65\left(1 \mathrm{H}\right.$, sextet, J_{HH} and J_{PH} 7, PCH), 2.2-1.1 [$\left.7 \mathrm{H}, \mathrm{m}, \mathrm{OC}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}\right]$ and $1.0\left(3 \mathrm{H}, \mathrm{dd}, J_{\mathrm{HH}}\right.$ 7 and $\left.J_{\mathrm{PH}} 18, \mathrm{PCHMe}\right) ; m / z 314\left(2 \%, \mathrm{M}^{+}\right), 230 \quad[20$, $\left.\mathrm{Ph}_{2} \mathrm{P}(\mathrm{OH}) \mathrm{CHMe}^{+}\right]$and $202\left(100, \mathrm{Ph}_{2} \mathrm{POH}^{+}\right)$.
[R-(R*, $\left.\mathrm{R}^{*}\right)$]-2-(1-Diphenylphosphinoylethyl)cyclohexane.This compound was prepared following the method of Stevens et al., ${ }^{7}$. Aqueous sodium hypochlorite ($10-14 \%$ available $\mathrm{Cl} ; 12.5$ cm^{3}) was added dropwise over 20 min to a vigorously stirred solution of the phosphine oxide $1(1 \mathrm{~g}, 3.05 \mathrm{mmol})$ in glacial acetic acid $\left(25 \mathrm{~cm}^{3}\right)$ at $16^{\circ} \mathrm{C}$. The mixture was warmed to $20^{\circ} \mathrm{C}$ and further aqueous sodium hypochlorite $\left(10 \mathrm{~cm}^{3}\right)$ was added dropwise over 1 h , with vigorous stirring, at such a rate as to maintain the yellow colouration in the flask. The mixture was cooled to $0^{\circ} \mathrm{C}$, water ($100 \mathrm{~cm}^{3}$) was added, and the resulting mixture was extracted with EtOAc ($3 \times 30 \mathrm{~cm}^{3}$). The combined organic extracts were washed with saturated aqueous sodium metabisulfite $\left(20 \mathrm{~cm}^{3}\right)$ at $c a .0{ }^{\circ} \mathrm{C}$. The organic extracts were dried $\left(\mathrm{NaSO}_{4}\right)$ and evaporated under reduced pressure (2 mmHg , solid CO_{2} cooled condenser) at ca. $0^{\circ} \mathrm{C}$. EtOAc ($75 \mathrm{~cm}^{3}$) was added to dissolve the residue and the solution was washed at $0^{\circ} \mathrm{C}$ with saturated aqueous sodium hydrogen carbonate ($2 \times 20 \mathrm{~cm}^{3}$), water $\left(20 \mathrm{~cm}^{3}\right)$ and saturated brine $\left(20 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated under reduced pressure. The residue was immediately purified by flash column chromatography ${ }^{3}$ on Merck 9385 silica gel (3.5 cm diam. $\times 16.5 \mathrm{~cm}$), eluting with EtOAc and then EtOAc-methanol (95:5) to give the phosphine oxide erythro- $3(0.89 \mathrm{~g}, 89.5 \%)$, m.p. $159-160^{\circ} \mathrm{C}$ (Found: C, 73.4; $\mathrm{H}, 7.1 ; \mathrm{P}, 9.6 . \mathrm{C}_{20} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{P}$ requires $\mathrm{C}, 73.6 ; \mathrm{H}, 7.1 ; \mathrm{P}, 9.5 \%$; R_{f} (EtOAc) 0.16; $v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right) 3350 \mathrm{br}$ (ketone hydrate OH), $1700(\mathrm{C}=\mathrm{O}), 1440(\mathrm{PhP})$ and $1170(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 8.0-7.3(10$ $\left.\mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right), 3.17\left(1 \mathrm{H}, \mathrm{dq}, J_{\mathrm{PH}} 13.3\right.$ and $\left.J_{\mathrm{HH}} 7, \mathrm{PCHCHCO}\right)$, 2.95-2.5 (1 H, m, CHCO), 2.5-2.1 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CO}$), 2.1-1.1 [8 $\left.\mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{4}\right]$ and $1.08\left(3 \mathrm{H}, \mathrm{dd}, J_{\mathrm{HH}} 7\right.$ and $\left.J_{\mathrm{PH}} 16.6, \mathrm{PCHMe}\right)$; $m / z 326\left(7 \%, \mathrm{M}^{+}\right), 281(40), 230\left(33, \mathrm{Ph}_{2} \mathrm{POC}_{2} \mathrm{H}_{5}{ }^{+}\right)$and 202 (100, $\mathrm{Ph}_{2} \mathrm{POH}^{+}$).

[R-($\left.\mathrm{R}^{*}, \mathrm{~S}^{*}\right)$]-2-(1-Diphenylphosphinoylethyl)cyclohexanone

 3.-This compound was obtained from the phosphine oxide 1 , following the Method of Stevens et al., ${ }^{7}$ but with subsequent epimerisation. In the same way, aqueous sodium hypochlorite and the phosphine oxide $1(2 \mathrm{~g}, 6.1 \mathrm{mmol})$ in glacial acetic acid $\left(50 \mathrm{~cm}^{3}\right)$ at $20^{\circ} \mathrm{C}$ gave a white foam $(2.07 \mathrm{~g})$. This was left to crystallise at room temperature for 1 week and resulted in almost complete conversion of erythro- 3 into threo- 3 by epimerisation and selective crystallation. A proportion of the residue (2 g) was purified by flash column chromatography ${ }^{3}$ on Merck 9385 silica gel (3.5 cm diam. $\times 15.2 \mathrm{~cm}$ column per 1 g residue), eluting with EtOAc-methanol (97:3) to give the phosphine oxide threo-3 (1.67 g, 87\%), m.p. 139-140 ${ }^{\circ} \mathrm{C}$ (Found:73.3; $\mathrm{H}, 7.2 ; \mathrm{P}, 9.7 . \mathrm{C}_{20} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{P}$ requires $\mathrm{C}, 73.6 ; \mathrm{H}, 7.1 ; \mathrm{P}, 9.5 \%$); $R_{\mathrm{f}}(\mathrm{EtOAc}) 0.23 ; v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right)$ 3360br (ketone hydrate $\mathrm{OH}), 1700(\mathrm{C}=\mathrm{O}), 1440(\mathrm{PhP})$ and $1170(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ 7.95-7.3 ($10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$), $3.34(1 \mathrm{H}$, dquint, $J 1.4$ and 7.3 , PCH), $2.9-1.3\left[9 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{4}\right], 2.5-2.1\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CO}\right), 2.1-$ $1.1\left[8 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{4}\right]$ and $1.08\left(3 \mathrm{H}, \mathrm{dd}, J_{\mathrm{HH}} 7\right.$ and $J_{\mathrm{PH}} 16.6$ PCHMe); m/z 326 ($7 \%, \mathrm{M}^{+}$), 281 (40) $230\left(33, \mathrm{Ph}_{2} \mathrm{POC}_{2} \mathrm{H}_{5}{ }^{+}\right.$) and $202\left(100, \mathrm{Ph}_{2} \mathrm{POH}^{+}\right)$.
[RS-($\left.\left.\mathrm{R}^{*}, \mathrm{~S}^{*}\right)\right]$-2-(1-Diphenylphosphinoylethyl)cyclohexanone. -This compound was prepared from the phosphine oxide 2. In a manner similar to that described above aqueous sodium hypochlorite and the phosphine oxide $2(150 \mathrm{mg}, 0.46 \mathrm{mmol})$ in glacial acetic acid ($3 \mathrm{~cm}^{3}$) gave the phosphine oxide threo-3 ($124 \mathrm{mg} \mathrm{83} \mathrm{\%}$).

Acid-catalysed Epimerisation of the Phosphine Oxide erythro-3.-Toluene-p-sulfonic acid ($c a .5 \mathrm{mg}$) and the phosphine oxide erythro- 3 (25 mg) in glacial acetic acid ($3 \mathrm{~cm}^{3}$) were stirred at room temperature for 7 days. Water ($15 \mathrm{~cm}^{3}$) was added, and the mixture was extracted with chloroform ($3 \times 5 \mathrm{~cm}^{3}$). The combined organic extracts were washed with saturated aqueous sodium hydrogen carbonate $(2 \times 5$ cm^{3}) and water ($5 \mathrm{~cm}^{3}$), dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated under reduced pressure. Deuteriochloroform was immediately added to the residue and NMR and HPLC showed the equilibrium ratio of diastereoisomers threo:erythro in solution was 10:1.

Pertrifluoroacetic Acid Oxidation of the Ketone erythro-3.Following the method of Emmons and Lucas, ${ }^{8}$ pertrifluoroacetic acid ($1.34 \mathrm{~mol} \mathrm{dm}^{-3}$ solution in dichloromethane; $1.5 \mathrm{~cm}^{3}$, 2 mmol) was added dropwise by glass pipette to a vigorously stirred mixture of the phosphine oxide erythro- $3(0.32 \mathrm{~g}, 0.96$ mmol) and disodium hydrogen phosphate ($420 \mathrm{mg}, 3 \mathrm{mmol}$) in distilled dichloromethane $\left(5 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$. Stirring was continued at room temperature for 1.5 h , after which the mixture was cooled to $0^{\circ} \mathrm{C}$, and anhydrous sodium sulfite (0.8 g) was added, followed by dichloromethane ($15 \mathrm{~cm}^{3}$). The mixture was filtered through Celite, which was washed through with further dichloromethane ($3 \times 20 \mathrm{~cm}^{3}$), and the combined filtrate and washings were evaporated under reduced pressure. The residue was purified by flash column chromatography ${ }^{3}$ on Merck 9385 silica gel ($27 \mathrm{~g} ; 2 \mathrm{~cm}$ diam. $\times 15.2 \mathrm{~cm}$), eluting with EtOAc (250 cm^{3}) and then ethyl acetate-methanol ($97: 3 ; 500 \mathrm{~cm}^{3}$) to give erythro-4 [$\left.R S-\left({ }^{*} R, S^{*}\right)\right]$-7-(1-diphenylphosphinoylethyl)-oxepan-2-one ${ }^{1}(0.30 \mathrm{~g}, 89 \%)$.

Pertrifluoroacetic Acid Oxidation of the Ketone threo-3. Following the method of Emmons and Lucas, pertrifluoroacetic acid and the phosphine oxide threo-3 ($100 \mathrm{mg}, 0.31 \mathrm{mmol}$) gave a mixture of threo-4 $\left[R S\right.$ - $\left.\left(R^{*}, R^{*}\right)\right]-7$-(1-diphenylphosphinoyl-ethyl)oxepan-2-one and $\left[R S\right.$ - $\left.\left(R^{*}, S^{*}\right)\right]$-3-(1-diphenylphosphin-oylethyl)oxepan-2-one 9 in the ratio 5:3 by NMR: $\delta\left(\mathrm{CDCl}_{3}\right)$ 7.84-7.74 (4 H, m, $\mathrm{Ph}_{2} \mathrm{PO}$ ortho protons), $7.56-7.47(6 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}_{2} \mathrm{PO}$ meta and para protons), 4.41 [$5 / 8 \mathrm{H}$, ddd, $J 9,6$ and 2.4 , $4 \mathrm{OCH}], 4.18-4.11\left[3 / 8 \mathrm{H}, \mathrm{dm}, J_{\text {geminal }} 12,9 \mathrm{OCH}\left(H^{*}\right)\right], 3.79$ [3/8 H, t, J12, $9 \mathrm{OCH}^{*}(\mathrm{H})$], 3.05 [3/8 H, quintet, $J 7.4,9 \mathrm{PCH}$], $2.97-2.85[3 / 8 \mathrm{H}+5 / 8 \mathrm{H}, \mathrm{m}, 9 \mathrm{CHC}=\mathrm{O}$ and 4 PCH$]$, and $2.6-$ $1.2\left[27 / 8 \mathrm{H}+55 / 8 \mathrm{H}, \mathrm{m}, 9 \mathrm{OCH}_{2}\left(\mathrm{CH}_{2}\right)_{3}\right.$ and Me , and $4\left(\mathrm{CH}_{2}\right)_{4}$ and Me$]$.

Acknowledgements

We thank SERC and Glaxo Group Research (Ware) for a CASE award, Drs. M. P. Gomez-Sal and P. R. Raithby ${ }^{12}$ for the X-ray crystal structure determination of 1, Dr. W. B. Cruse ${ }^{13}$ for that of 7, and Dr. Eric Collington for many helpful discussions

References

1 D. Levin and S. Warren, Tetrahedron Lett., 1985, 26, 505; J. Chem. Soc., Perkin Trans. 1, 1988, 1799.
2 Preliminary communication: D. Levin and S. Warren, Tetrahedron Lett., 1986, 27, 2265.
3 W. C. Still, M. Kahn and A. Mitra, J. Org. Chem., 1978, 43, 2923.
4 P. Wallace and S. Warren, Tetrahedron Lett., 1985, 26, 5713; J. Chem. Soc., Perkin Trans. 1, 1988, 2971.
5 F. Sauriol-Lord and T. B. Grindley, J. Org. Chem., 1981, 46, 2831.
6 A. D. Buss, W. B. Cruse, O. Kennard and S. Warren, J. Chem. Soc., Perkin Trans. 1, 1984, 243.
7 R. V. Stevens, K. T. Chapman and H. N. Weller, J. Org. Chem., 1980, 45, 2030; R. V. Stevens, K. T. Chapman, C. A. Stubbs, W. W. Tam and K. R. Albizati, Tetrahedron Lett., 1982, 23, 4647.
8 W. D. Emmons and G. B. Lucas, J. Am. Chem. Soc., 1955, 77, 2287.
9 R. Noyori, T. Sato and H. Kobayashi, Tetrahedron Lett., 1980, 21, 2569; R. Noyori, H. Kobayashi and T. Sato, Tetrahedron Lett., 1980, 21, 2573; S. N. Suryawanshi, C. J. Swenson, W. L. Jorgensen and P. L. Fuchs, Tetrahedron Lett., 1984, 25, 1859.
10 R. B. Turner, J. Am. Chem. Soc., 1950, 72, 878; T. F. Gallagher and T. H. Kritchevsky, J. Am. Chem. Soc., 1950, 72, 882; K. Mislow and J. Brenner, J. Am. Chem. Soc., 1953, 75, 2318.

11 A. D. Buss and S. Warren, J. Chem. Soc., Perkin Trans. 1, 1985, 2307.
12 M. P. Gomez-Sal and P. R. Raithby, unpublished observations.
13 W. B. Cruse, unpublished observations.

Paper 2/02865D
Received 1st June 1992
Accepted 16th June 1992

